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correction for solvent effect, have often given useful insights 
into molecular behavior in solution. 

Although the calculated energy differences are small (2-7 
kcal), we note that the actual energy differences are also small. 
Furthermore we make the usual assumption21 that, when only 
small perturbations (such as addition of a methyl group) are 
made to the system, errors of the CNDO/2 method will tend 
to cancel. 

For linear polypeptides, then, N-alkylation enhances epi-
merization because of a higher concentration of cis peptide 
(effect b), which is more easily deprotonated (effect a), and 
because of hyperconjugative stabilization of the (3 carbanion 
(effect c).22 For diketopiperazines, the incipient carbanion is 
held in the more favorable transoid conformation (effect a), 
as shown by the outline in 8. N-Alkylation of diketopiperazine 
speeds epimerization further by hyperconjugation (effect 
c). 

Diketopiperazine carbanions are calculated to be substan­
tially more easily formed than those from the peptide models 
1-7. This is primarily due to carbanion stabilization by the C„ 
substituent, as shown by the comparable deprotonation energy 
computed for a representative conformation of the N-methy-
lalanine derivative (9). 

In conclusion, it appears that CNDO/2 calculations not only 
reproduce the observed relative ease of epimerization of N-
alkylated polypeptides and cyclic dipeptides, but also help 
identify some effects which govern this reaction. 
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Conformations of Cyclododecyne. 
Evidence from Dynamic Nuclear Magnetic Resonance 
Spectroscopy and Iterative Force-Field Calculations 

Sir: 

The structural and conformational information available 
on cyclic acetylenes and their derivatives is rather limited,1 ~3 

and in the homologous cycloalkynes only the structure of cy-
clooctyne is known.2 We now show that the major conforma­
tional features of cyclododecyne (I) can be determined by 
dynamic nuclear magnetic resonance spectroscopy and itera­
tive force-field calculations. 

The Qi-CH2 resonance in the 251-MHz 1H NMR spec­
trum4-5 of 1 broadens strongly below about —100 0C and is 
observed as a complex pattern spread over at least 160 Hz 
below —140 0C. Since all proton-proton coupling constants 
should be <20 Hz, this pattern must represent more than two 
chemical shifts. The "coalescence temperature" is about —107 
0C and thus some conformational process with a AG* of ~7.8 
± 0.3 kcal/mol must be present.6 

In the 13CNMR spectra4 of I, the acetylenic carbon reso­
nance, which is a sharp single line above about —60 0C, 
broadens as the temperature is lowered, reaches a maximum 
broadening at about —95 0C, and finally gives rise to three 
sharp lines with intensity ratios of ~1:4:1.2 at —133 0C.7 These 
results can be rationalized in terms of two conformations, one 
symmetrical and the other unsymmetrical (idealized intensity 
ratio for the acetylenic carbons of 1:4:1 for a conformational 
ratio of 2:1; i.e., AG° =* 0.2 kcal/mol at -133 0C). The major 
conformation is symmetrical and is immediately consistent 
with a [3yne333]8 structure (Figure 1), which can be thought 
of as derived from the lowest energy conformation of cyclo-
dodecane, i.e., the [3333] or "square" conformation.q The 
minor conformation of I lacks symmetry and is difficult to 
identify without further information such as that provided by 
force-field calculations. 

Boyd's iterative force-field program,10 with modified par­
ameters,313 has been used to calculate the strain energies and 
geometries of the conformations of I shown in Table I. The 
initial geometries required for the calculations have been ob­
tained by replacing CH2CH2 by C=C groups in molecular 
models of the known low-energy conformations of cyclodo-
decane.9 Because of its linear (or nearly linear) geometry, the 
acetylenic unit (-C=C-) cannot reside at.comer positions, and 
this greatly limits the number of available conformations. 
Vibrational frequencies have been calculated in all cases to 
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Table I. Experimental Free Energies and Calculated Strain 
Energies" of Various Conformations of Cyclododecyne 

conformation* 

[4vne332]' 
[3yne333]-
[3yne243] 
[3yne234] 
[4yne233] 
[4yne323] 
[3yns324] 

symmetry 

C1 

C2 

C, 
C1 
C1 

C1 
C1 

ASEC 

0.0 
0.8 
1.4 
1.9 
2.1 
2.3 
3.5 

" In kilocalories per mole. * See note 8 for nomenclature; the 
acetylene units in these conformations are slightly bent (e.g., internal 
angles of 177 and 179° for [4yne332]), and this allows Boyd's pro­
gram,10 which fails for 6 = 180°, to be used.c Strain energy relative 
to that of the [4yne332] whose total (force-field) strain energy is 7 
kcal/mol (the contributions to angle bending, torsional, and non-
bonded strains are 2.0, 1.4, and 3.0 kcal/mol, respectively). d Free 
energy relative to that of the [3yne333] at -133 0C. e See Figure 1 
for torsional angles. 

Figure 1. Calculated torsional angles in the [3yne333] and [4yne332] con­
formations of cyclododecyne. 

verify that true (local) energy minima have been ob­
tained." 

Of the two lowest energy conformations, one is symmetrical 
and the other is unsymmetrical (Figure 1), in agreement with 
the NMR data. The calculated order of these conformations 
is inverted (Table I), but this is not very significant, given the 
small energy differences and the expected accuracy (within 
1 kcal/mol) of the force-field calculations. The next four 
conformations (Table I) are not observed at low temperatures, 
but, because of their fairly low relative strain energies (1.4-2.3 
kcal/mol), they may become slightly populated at higher 
temperatures.12 

On the assumption that the only mechanism of exchange is 
the interconversion of the [3vnc333] and [4>nc332], the 13C 
NMR data gives'3 a conformational energy barrier of 7.9 ± 
0.3 kcal/mol at - 9 5 0 C, in agreement with the barrier esti­
mated from the 1H NMR data. However, the above simple 
interconversion leads only to a Ci time-averaged symmetry, 
whereas the high temperature ( > - 8 0 0C) 1H spectrum of 1 
corresponds to a Cj1 time-averaged symmetry. Thus, a second 
conformational process must exist in I, and its barrier must be 
of the order of 8 kcal/mol in order to accommodate the ' H 
NMR data. 

It is planned to investigate the conformational properties 
of other cycloalkynes by the methods described above. 
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13C NMR Studies of Marine Natural Products. 1. 
Use of the SESFORD Technique in the Total 13C NMR 
Assignment of Crassin Acetate 

Sir: 

The antineoplastic and cytotoxic marine cembranolide, 
crassin acetate (la),1 is representative of the burgeoning 
number of cembrane diterpenes steadily being reported from 
marine organisms of the coelenerate phylum, as well as from 
terrestrial plant sources such as tobacco and pines.2 

Unambiguous 13C NMR spectral assignment has not yet 
appeared for any member of this interesting group of 14-
membered carbocyclic compounds. We now report the com­
plete assignment of the 13C NMR spectra of the naturally 
occurring crassin acetate (la), and its derivatives crassin (lb) 
and crassin diacetate (Ic), based largely on the use of the newly 
developed technique of selective excitation with single fre-
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